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Intricate phase diagram of a prevalent visual circuit reveals universal dynamics,
phase transitions, and resonances
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Neural feedback-triads consisting of two feedback loops with a nonreciprocal lateral connection from one
loop to the other are ubiquitous in the brain. We show analytically that the dynamics of this network topology
are determined by algebraic combinations of its five synaptic weights. Exploration of network activity over the
parameter space demonstrates the importance of the nonreciprocal lateral connection and reveals intricate
behavior involving continuous transitions between qualitatively different activity states. In addition, we show
that the response to periodic inputs is narrowly tuned around a center frequency determined by the effective

synaptic parameters.
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Neural microcircuits are well-defined networks of neurons
with connectivity patterns exquisitely adapted for performing
specific signal-processing tasks [1-3]. One prevalent connec-
tivity pattern found among neural microcircuits consists of
two feedback loops with a nonreciprocal lateral connection
from one loop to the other (Fig. 1). We refer to this topology
as a feedback triad. In mammalian visual pathways for in-
stance, this topology forms one of many microcircuits that
are linked by poorly isolated cortico-cortico interactions
[Fig. 1(a)] [4—6]. In contrast, the isthmic visual pathway of
birds and reptiles [Fig. 1(b)] maintains the synaptic topology
of the feedback-triad but is more-isolated from other brain
areas [7—11]. Therefore the visual circuit of birds and reptiles
offers a substrate to investigate the functional significance of
the isolated feedback triad.

In this paper, we address the fundamental question of how
synaptic weights influence the dynamics and signal-proces-
sing characteristics of a single feedback-triad microcircuit.
We show that the network’s dynamics are not controlled by
individual synaptic weights but rather by algebraic combina-
tions of them that crucially depend upon the nonreciprocal
lateral connection for the generation of complex network ac-
tivity. We further show that these algebraic combinations de-
termine the center frequency of the resonance profile of the
network. The insights gained into how synaptic weights con-
trol a network’s dynamics and signal-processing carry funda-
mental implications for our understanding of neural develop-
ment, neuromodulation of network activity, and animal-to-
animal variability of synaptic parameters.

The feedback-triad microcircuit [Fig. 1(c)] consists of
three neurons with one input and five synaptic connections
with delays 7. For simplicity, we chose a discrete-time recur-
rent neural network with a piecewise-linear activation func-
tion [12—-14] for the representation of the triad circuitry. Spe-
cifically, the activity x; of neuron i at time ¢ depends upon the
activities x; of coupled neurons j at the earlier time ¢—7

J
according to the following equations of motion:
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xi(t)=0<2 Wi_,‘x_,‘(t—T)'*'si>~ (1)
j=1

The matrix w;; measures the strength of connections between
neurons i and j and the nonlinear transfer function o is cho-
sen to be the max function o(u)=max{0,u} u € R, guaran-
teeing nonnegative neuronal activities. Based on the circuit
connectivity shown in Fig. 1(c), the synaptic weight matrix is

given by
, (2)

where the feed-forward connections are denoted by Latin
letters and the recurrent connections by Greek letters. To
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FIG. 1. (Color) Neural feedback triads. (a) In mammals, retinal
ganglion cell (RGC) axons (black arrows) project to the thalamic
lateral geniculate nucleus (1); this in turn projects to the thalamic
reticular nucleus (2) and to the cortex (3). The latter two nuclei feed
back to the lateral geniculate nucleus (1). (Modified after [5].) (b) In
reptiles, RGC axons project to the optic tectum (1); this in turn
projects to the nucleus isthmi pars parvocellularis (2) and to the
nucleus isthmi pars magnocellularis (3). The latter two nuclei feed
back to the optic tectum (1). (Modified after [10].) Note the nonre-
ciprocal lateral connection from (3) to (2) in each circuit. (c) The
feedback triad consists of two feedback loops with a nonreciprocal
lateral connection between them.
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FIG. 2. (Color) Dynamics of feedback-triads. Subfigures (a)—(d) show converging, oscillatory, diverging, and quasiperiodic activity states
that result from choosing different combinations of the two effective synaptic parameters 7 and £ Subfigure (e) shows the color coded
parameter space of activities. The white region corresponds to stable fixed points, the black region to unstable fixed points, the blue to orange
colors represent oscillations with periods corresponding to the color and the cyan represents quasiperiodic states. Lastly, the purple region
represents long period oscillations not represented on the color bar. (f) Zoom centered on the cross hair indicating a critical region where two
Arnol’d tongues overlap and a fractal of the structure appears. (g) Coexistence of multiple attractors (multistability) at one combination of

7 and & accessed by different initial conditions.

simplify the analysis, we set the synaptic delays 7 to the
same value. Lastly, the input s is given by (s,,0,0) where s,
is the input from the RGC axons.

We investigate the case in which the feed-forward weights
a and b are positive because this assignment has been experi-
mentally established in the vertebrate visual system [15]. In
addition, our initial analysis will assume that the weight of
the lateral connection c is also positive. Thus, the activities
of neurons 2 and 3 will always be positive, and passage of
the neuronal input through the nonlinear transfer function is
unnecessary for these neurons. With this simplification, Eq.
(I) can be reduced from three equations to the following
3 7-cycle difference map for the activity of the network, taken
as the activity of neuron 1.

xi(t) = ols; + g, (1= 27) + &x, (= 37)]. 3)
The synaptic weights now appear only in the combinations
n=pBb+ aa, &= Pac, 4)

thereby reducing the complexity of the model from five syn-
aptic parameters to two effective synaptic parameters.

In the case of instantaneous signal transfer (i.e., 7=0) the
network activity is stationary for all parameter values # and
& However, for nonzero delay the dynamical behavior can

be complex and is qualitatively independent of 7 since Eq.
(3) can be rescaled in time. Thus we identify the delay with
a unit time step and choose the network input s;=1.

By varying the effective synaptic parameters four types of
dynamical behaviors emerge, namely, convergent [Fig. 2(a)],
oscillatory [Fig. 2(b)], divergent [Fig. 2(c)], and quasiperi-
odic [Fig. 2(d)]. Color coding these four activity states, a
dynamical phase diagram representing network activity nu-
merically in the 7-£& phase plane has been obtained [Figs.
2(e) and 2(f)]. This parameter space features qualitatively
different activity-state regions with fascinating geometrical
boundaries. One immediate result is that if the synapse c is
zero, the parameter & vanishes leaving only converging and
period-4 oscillations [Fig. 2(e)] as the biologically relevant
activity states. Thus, the nonreciprocal connection between
the feedback loops is crucial for generating complex network
activity patterns.

The boundaries of the converging region are obtained by
substituting a solution of the form x;()=\" into the linear-
ized form of Eq. (3). This yields one real and a complex-
conjugate pair solution. By demanding that the moduli of
these eigenvalues be less than one, we determine the bound-
aries of the fixed-point region to be 77=&-1, é&=75-1, and
&=1-n which is consistent with differential-delay-equation
models studied previously [16].
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The limit-cycle regions in the phase diagram are a result
of the nonlinearity imposed on the activity of each neuron by
the transfer function o. To understand the geometrical
boundaries of these regions, we developed a set of constraint
equations from our numerical simulation of the steady-state
trajectories of activities for each neuron. In particular, the
activities of each neuron can be represented by a vector
whose length 7 is the period of the limit cycle. Elements
from different vectors are related to each other by Eq. (1)
thus giving 37 constraint equations. When solved simulta-
neously these equations yield polynomials in % and ¢ that
form the boundaries of each limit-cycle region.

The striations in the phase diagram are composed of dis-
torted triangular regions of limit-cycle activity known as
Arnol’d tongues [20,21]. We solved the corresponding con-
straint equations for each tongue and found that the bound-
aries of the largest tongues are described by the following
geometric polynomials:

)4 2p

Dinf + 2 =0 (5a)
i=1

i=1

and

P 2p
1+ n(Einf"‘l+E §f> =0. (5b)
i=1

i=1

The upper bound of summation p is the order of the polyno-
mial and is related to the period of the tongue by the equa-
tion p=(T-1)/3.

Where the tongues are narrow, quasiperiodic activity
states [cyan in Fig. 2(e)] separate individual tongues. The
quasiperiodic trajectories have irrational periods meaning the
trajectory never completes a closed orbit [Fig. 2(d)]. As the
magnitude of the parameters # and & increases the tongues
widen until a critical value is reached where individual
tongues overlap and the set of quasiperiodic states shrinks to
measure zero. At this critical value a fractal of the Arnol’d
tongue structure appears [Fig. 2(f)] and the boundaries ex-
hibit chaoticlike dynamics as slight changes in the initial
conditions result in drastically different network activity.

We further tested the quasiperiodic activity states for cha-
otic dynamics by varying the initial conditions and checking
whether neighboring trajectories diverged from one another.
The trajectories are not chaotic, but they do exhibit qualita-
tively different activity depending upon the initial conditions
[Fig. 2(g)]. This coexistence of multiple attractors is referred
to as multistability and has been proposed as a mechanism
for memory storage and pattern recognition [17,18].

The parameter space has many regions in which small
changes in the effective synaptic weights can lead to quali-
tatively different network activity states. To understand the
transition from one activity state to another, we employed an
order parameter M involving the Fourier transform of the
network activity. This was motivated by the observation that
the Fourier transform of the activity near a regional boundary
contained Fourier components consistent with periods corre-
sponding to that region and the adjacent region [Figs. 3(a)
and 3(b)]. The order parameter M=1 —Zprag Mo/ 2, com-
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FIG. 3. Critical behavior near the boundary separating the
period-2 and period-6 activity states. Plots (a) and (b) show the
gathering of Fourier weights around period-6 as the path moves
closer to the transition boundary. (¢) Order parameter M measured
along this path. (d) Phase-space plot depicting activity responses for
different x; initial conditions for a point on the boundary. (e¢) Tran-
sitory time 6@ measured near the critical value in the initial
conditions.

pares the power [, of each peak k in the Fourier transform
relative to the total power of the spectrum. As the boundary
separating the period-2 [star in Fig. 2(e)] and period-6 activ-
ity states is crossed, a pronounced phase transition occurs
[Fig. 3(c)], indicating that points along the boundaries sepa-
rating different network states will be acutely sensitive to the
initial network activity. To quantify this critical behavior, we
determined numerically the network activity for various ini-
tial conditions [Fig. 3(d)] and measured the length of the
transitory time 6 before the network settles into steady-state
activity [Fig. 3(e)]. The results show that the boundaries are
multistable, a feature that allows the circuit to show activity-
dependent responses, such as are observed experimentally in
the mammalian visual system [19].

An important signal-processing characteristic is the sus-
ceptibility of the feedback-triad to periodic inputs with spe-
cific driving frequencies w. In Fourier space, the linear re-
sponse F(w) of the triad is related to the stimulus 5(w) by
Fw)=x(w)5(w), where ¥(w) is the ac susceptibility. This re-
lationship holds for sufficiently weak driving input. For ex-
ample, at the point (7, ¢)=(-1.5,-1.5), the neural suscepti-
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FIG. 4. Susceptibility profile of the feedback-triad over frequen-
cies given in units of 77!, The susceptibility is sharply tuned about
a resonant frequency determined by the two effective synaptic
weights. See text and Eq. (6).

bility profile was found to follow a scaled Lorentzian of the

form
~_ (r12)
X_b{ 7 (T72)* + (w - wo)z]}’ ©)

where the Lorentzian width I'=2.5X 107%, the scale factor
b=0.727 25, and the Lorentzian neural resonant frequency
wy=0.2. Throughout this work, we set the time step 7 to
unity. For a general time step 7, the values of both b and w
quoted above are in units of 7. This sharp tuning (Fig. 4)
provides an effective bandpass filter that enables the extrac-
tion of a specific frequency from the input stimulus. Further-
more, since the resonant frequency depends on the values of
the synaptic weights, neuromodulatory substances would al-
low the microcircuit to switch modes of preferred stimulus
frequency.

Our analysis of the feedback triad has been limited by the
condition that the nonreciprocal lateral connection between
the feedback loops is positive. However, in the mammalian
and isthmotectal visual systems the lateral connection ¢ is
negative. With this assumption Eq. (1) can be reduced to the
following two equations of motion:

xi(1) = os) +x,(1 = 7) + px, (1 = 27)], (7)

x1(0) = ol ¢y (1 = ) + ¢, (1 = 27) |. (8)

The synaptic weights now appear only in the combinations
p=aal B, p=b/ B, and Y=ac/ B, where we have used the fact
that the local feedback connection 3 is positive in the mam-
malian and isthmotectal visual systems.

Proceeding as before, we identify the delay with a unit
time step and choose the network input s;=1. By varying the
three effective synaptic parameters a three-dimensional pa-
rameter space for the activity of neuron x; has been obtained
and visualized in a set of slices through the parameter space
(Fig. 5). Although the outline of the unstable fixed points
(divergent trajectories) is similar in each slice, the internal
structure of both the stable (convergent trajectories) and
limit-cycle regions undergo significant changes as the param-
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FIG. 5. (Color) Dynamics of feedback triads including negative
nonreciprocal lateral connections. Slices at ¢=(0,1.5,1.7) through
the three-dimensional parameter space defined by the effective syn-
aptic parameters p, ¢, and ¢ are shown with the same color-coding
as in Fig. 2(e).

eter ¢ is varied. For sufficiently large values of ¢ the param-
eter space reduces to the two-dimensional model in the pa-
rameters 7 and & because Eq. (8) no longer requires
rectification and can be substituted into Eq. (7).

Numerous neural and biochemical [22,23] networks can
be mapped onto the feedback-triad network topology we
have investigated. This study illustrates how complex dy-
namics can be achieved from very small collections of inter-
acting elements. Specifically, it has been shown that the dy-
namics and signal-processing characteristics of the feedback
triad are determined by two or three combinations of the
synaptic weights that depend upon the lateral connection for
the generation of complex dynamics. The implications of this
study are fourfold. First, the seeming incongruity in animal-
to-animal variability of synaptic weights and equivalent dy-
namics is addressed because network activity is not deter-
mined by individual synapses but rather by certain
combinations of the synaptic weights. This result is in agree-
ment with previous studies that have shown equivalent dy-
namics from disparate synaptic weights [24]. Second, ma-
nipulation of individual synapses by biochemical agents
must likewise be envisioned in terms of combinations of
synaptic weights. Third, the existence of continuous transi-
tions between different activity states in the two-dimensional
parameter space highlights the flexibility of the dynamics in
terms of neuromodulation of the synaptic weights and
activity-dependent responses. Last, the signal response is
sharply tuned around a center frequency determined by the
two effective synaptic weights, indicating that larger net-
works composed of feedback-triad microcircuits may be
suited to bandpass filtering of neural stimuli.
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